Authors: Jessica Klusek, Jinkuk Hong, Audra Sterling, Elizabeth Berry-Kravis, and Marsha Mailick
The study team thanks the participants for their time and effort in participating in the study and Dr. Elizabeth Berry-Kravis and the Molecular Diagnostic Laboratory at Rush University for their assistance in molecular testing.
Summary
Doctoral student Walker McKinney, Dr. Matt Mosconi, and colleagues investigated how aging as a premutation carrier may affect sensorimotor (exactly as it sounds, both sensory and motor) brain systems. Premutation carriers of the FMR1 gene are at risk of developing Fragile X-associated tremor/ataxia syndrome (FXTAS), and although several studies have documented sensorimotor issues in aging premutation carriers before the onset of clinical symptoms of FXTAS, the brain processes associated with sensorimotor issues and their potential to serve as early indicators of FXTAS have not been determined.
This study included 16 FMR1 premutation carriers and 18 control participants. Participants’ brain activity was measured with functional magnetic resonance imaging (fMRI) while they performed a test of sensorimotor control. Participants were instructed to grip a handle that measured their force level while they received visual feedback about how hard they were pressing. Participants viewed a white force bar that moved upward with increased force and downward with decreased force and a red static target bar (A) that turned green to begin each trial. Participants were instructed to press (C) so that the white force bar stayed as steady as possible at the level of the green target bar (B). Participants completed this sensorimotor task while the fMRI machine recorded small changes in blood flow in the parts of the brain that were active during the task.
Sensorimotor test stimuli and custom fiber-optic transducer (C; Neuroimaging Solutions, Gainesville, FL). Participants pressed when the red bar (A) turned green (B) in order to move the white bar up to the target green bar. They were instructed to maintain their force level at the level of the green bar as steadily as possible.
Researchers found that the functional connectivity of the cerebellum (a brain area that controls movement accuracy and timing) and the extrastriate cortex (a brain area involved in processing visual information) is reduced in aging FMR1 premutation carriers. This suggests that communication between visual processing regions in the brain and the cerebellum, a brain region critical for monitoring and adjusting movements so that they are accurate, is disrupted during aging in FMR1 premutation carriers and may be an early indicator of FXTAS.
Why This Matters
Researchers have struggled to find biomarkers to indicate who might develop FXTAS and who is showing early signs of neurodegeneration before the emergence of clear clinical concerns. These findings meant that functional connectivity between the cerebellum and extrastriate cortex could serve as a biomarker for FXTAS. This potential biomarker could help researchers and clinicians better predict which premutation carriers may develop FXTAS before they experience the tell-tale symptoms (e.g., kinetic tremor, gait issues).
Next Steps
Researchers will need to follow these participants over time to see if these functional connectivity differences are in fact a biomarker or an early indicator for FXTAS. More research using sensorimotor tasks and connectivity measurements is needed to further understand this potential biomarker.
Funding: This work was supported by the Once Upon a Time Foundation and the National Institutes of Health (U54 HD090216).
more research results
FMR1 Carriers Report Executive Function Changes Prior to Fragile X-Associated Tremor/Ataxia Syndrome: A Longitudinal Study
Authors: David Hessl, PhD, Karina Mandujano Rojas, BS, Emilio Ferrer, PhD, Glenda Espinal, BS, Jessica Famula, MS, Andrea Schneider, PhD, Randi Hagerman, MD, Flora Tassone, PhD, and Susan M. Rivera, PhD Summary: People with Fragile X-associated tremor/ataxia syndrome (FXTAS) are not only affected by movement problems, but also by changes in cognition, especially what is referred to as “executive dysfunction” (problems with memory, disinhibition, attention, planning). Moreover, male individuals living with the premutation have [...]
Healthcare Experiences of African American Women with a Fragile X Premutation
Authors: Andy King, Nadia Ali, Cecelia Bellcross, Fabienne Ehivet, Heather Hipp, Jessica Vaughn, Emily G. Allen An estimated 1 in 291 women carry a Fragile X premutation (PM) and there is little evidence that this number differs by racial and ethnic background. Yet African American women who have a PM continue to be underrepresented in Fragile X research. African Americans experience disparities in access, quality, and outcomes of their healthcare, including reproductive and women’s [...]
Emotion Dysregulation in Fragile X Syndrome
By Mya Jones Authors: Rebecca C Shaffer, Debra L Reisinger, Lauren M Schmitt, Martine Lamy, Kelli C Dominick, Elizabeth G Smith, Marika C Coffman, Anna J Esbensen Summary: A large portion of individuals with Fragile X Syndrome (FXS) experience the inability to change how strongly they feel an emotional experience or how they respond to the experience, referred to as emotion dysregulation. Cincinnati Children’s Fragile X Center team reviewed the surrounding and relevant research conducted [...]
Antisense Oligonucleotide Rescue of CGG Expansion–Dependent FMR1 Mis-Splicing in Fragile X Syndrome Restores FMRP
One of the most exciting advancements being done in Fragile XS research today is antisense oligonucleotide (ASO) therapy.
The effect of college degree attainment on neurodegenerative symptoms in genetically at-risk women
Researchers at the University of Wisconsin explored the relationship between obtaining a college degree and the manifestation of the neurodegenerative symptoms of FXTAS among women at elevated genetic risk.
Fragile X-associated tremor/ataxia syndrome rating scale: Revision and content validity using a mixed method approach
Researchers across several institutions set out to develop a revised version of the FXTAS-RS designed to specifically assess FXTAS motor signs.