Authors: Jessica Klusek, Jinkuk Hong, Audra Sterling, Elizabeth Berry-Kravis, and Marsha Mailick
Cerebellar-Cortical Function and Connectivity during Sensorimotor Behavior in Aging FMR1 Gene Premutation Carrier
The study team thanks the participants for their time and effort in participating in the study and Dr. Elizabeth Berry-Kravis and the Molecular Diagnostic Laboratory at Rush University for their assistance in molecular testing.
Summary
Doctoral student Walker McKinney, Dr. Matt Mosconi, and colleagues investigated how aging as a premutation carrier may affect sensorimotor (exactly as it sounds, both sensory and motor) brain systems. Premutation carriers of the FMR1 gene are at risk of developing Fragile X-associated tremor/ataxia syndrome (FXTAS), and although several studies have documented sensorimotor issues in aging premutation carriers before the onset of clinical symptoms of FXTAS, the brain processes associated with sensorimotor issues and their potential to serve as early indicators of FXTAS have not been determined.
This study included 16 FMR1 premutation carriers and 18 control participants. Participants’ brain activity was measured with functional magnetic resonance imaging (fMRI) while they performed a test of sensorimotor control. Participants were instructed to grip a handle that measured their force level while they received visual feedback about how hard they were pressing. Participants viewed a white force bar that moved upward with increased force and downward with decreased force and a red static target bar (A) that turned green to begin each trial. Participants were instructed to press (C) so that the white force bar stayed as steady as possible at the level of the green target bar (B). Participants completed this sensorimotor task while the fMRI machine recorded small changes in blood flow in the parts of the brain that were active during the task.